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Synchronizable Error-Correcting Codes* 

R. C. B o s h  AND J. G. CALDWELL 

Department of Statistics, University of North Carolina, 
Chapel Hill, North Carolina ~751~ 

A new technique for correcting synchronization errors in the trans- 
mission of discrete-symbol information is developed. The technique 
can be applied to any t-additive-error-correcting Bose-Chaudhuri- 
Hocquenghem code, to provide protection against synchronization 
errors. The synchronization error is corrected at the first complete 
received word after the word containing the synchronization error, 
even if this following word contains up to t additive errors. An exam- 
ple is presented illustrating in detail the application of the tech- 
nique. 

I. INTRODUCTION 

In  order for digital information to be accurately and efficiently trans- 
mi t ted  over a noisy channel, efficient procedures for eliminating or 
determining the effect of the noise must  be devised. Considerable 
research has been performed to determine means to accomplish reliable 
transmission in the presence of additive noise, i.e., noise which m a y  
cause t ransmit ted  symbols to be altered, or changed into other symbols. 
An effective means for coping with additive errors is to employ an addi- 
tive-error-correcting code. For channels in which noise affects successive 
symbols independently, one of the best among the known classes of 
additive-error-correcting codes is the class of Bose-Chaudhur i -Hoc-  
quenghem, or BCH,  codes. 

Whether  or not additive errors are of concern in a particular situation, 
there m a y  occur a much more serious kind of error. This second type  
of error arises due to the fact tha t  the individual symbols of a sequence 
of symbols have physical meaning to the receiver only when considered 
together with certain other symbols of the sequence. Generally, the 
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sequence of received symbols must be correctly grouped into "words," 
or "frames," in order for the receiver to properly understand the mes- 
sage. When noise is such that the receiver incorrectly groups the sym- 
bols into words, reception is said to be out of synchronization with trans- 
mission, and a synchronization error is said to have occurred. Note that 
a synchronization error may be considered to be a loss or gain of a cer- 
tain number of symbols in transmission. 

In contrast to the situation for additive errors, research concerned 
with the development of efficient techniques for synchronization-error 
correction has been limited. This paper presents a new technique for 
synchronization-error correction. The technique can be applied to any- 
cyclic additive-error-correcting code, and enables immediate correction 
of synchronization errors, simultaneously with the correction of addi- 
tive errors. 

Just as BCH codes exist for a range of values of t, the number of 
additive errors allowed per code word, the new synchronization tech- 
nique can be applied to provide protection against synchronization errors 
involving a range of symbol losses or gains. If the new technique is chosen 
so that up to t~ symbol losses can be corrected and up to t~ symbol gains 
can be corrected, then we say that the code to which the technique is 
applied is a t~-synchronization-error-correcting code, where t~ = t,~ -+- tr. 
If the technique is applied to a t-additive-error-correcting BCH code, 
we call the resulting code a (t, ts)-error-correcting code. The resulting 
code can simultaneously correct synchronization errors and additive 
errors, and we refer to such a code as a synchronizable error-correcting 
code. 

Early work concerned with mathematical analysis of the synchroniza- 
tion problem was done by Barker (1953). Recent work aimed at finding 
synchronizable error-correcting codes has been done by Stiffer (1965), 
Levy (1966), and Tong (1966). M~ny others have studied the syn- 
chronization problem, and an extensive bibliography of articles relating 
to synchronization is given by Caldwell (1966). 

II. BCH CODES 

Because the synchronizable error-correcting codes to be developed 
later will be based on BCH codes, we shall give here a brief description 
of these codes. (Bose and Ray-Chaudhuri, 1960a, b; and Hocquenghem, 
1959). 

Consider a q-ary channel, i.e., a channel capable of transmitting q 
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distinct  symbols  where q is a pr ime or the power of a prime. Let  the  
Galois field GF(q)  be extended to GF(q~) ,  and let a be an element of 
the extended field such t h a t  1, a, a 2, • • • , a ~-~ are all different and a ~ = 1. 
Then  n is a divisor of qm - 1, and if 0 is a primit ive element of GF(q  m) 
then a = 0 ~, where un = q'~ 

1 a m° (am°) 2 

Ho = 1 a ~°+i (a'~°+l) 2 

--  1. Consider the matr ix 

. . .  ( m0)~-~ 

( mo+a-2)n-lJ 

E a c h  element of GF(q  m) can be expressed as a polynomial  of degree 
m - 1 of the  primit ive root  0, the  coefficients of the  polynomial  belong- 
ing to GF(q) .  Hence a ny  element can be identified wi th  an m-vector  over  
G F ( q ) ,  viz., the  coefficient vector  of the  corresponding polynomial .  
Hence  the  matr ix  H0 can be regarded either as a (d --  1) X n matr ix  
over  GF(q m) or as a (d --  1) X m n  matr ix  over GF(q) ,  on identifying 
the  elements of GF(q  m) with  column m-vectors  over  GF(q) .  I n  par-  
t icular the  element 1 is identified wi th  the  t ranspose  of (1, 0, 0, • • • , 0) .  
W h e n  regarded in this second way,  the  rank  of H0 is r <= m ( d  -- 1). I f  
H is the  matr ix  obta ined f rom H0 by  retaining r sui tably  chosen independ- 
ent  rows then  it is known,  Peterson (1961),  t h a t  H is the  par i ty-check  
matr ix  of an (n,  Ic) B C H  code C, wi th  m i n i m um distance d and redund-  
ancy  r, (k  = n -- r) .  I f  d = 2t + 1, then  the  code will be t-error-correct- 
ing. 

Le t  g d x )  be the  m i n i m um  funct ion of a i over  GF(q) ,  i.e., gi(x)  is the  
smallest-degree monic  polynomial  over GF(q)  which has a ~ for a root.  
Then  the  degree of g~(x) is a divisor of m, and therefore cannot  exceed 
m. Let  

g(x )  = L.C.M.  {gm0(x), g~o+l(X), " '" , gm0+d-2(x)}, 

then  g(x)  is the  smallest  degree monic  polynomial  over GF(q)  which has 
,~0 a~0÷l, , a m°+d-2, and is the  generator  polynomial  of the  roots  a , . . .  

B C H  code C. The  vec tor  v '  = (v0, vl, • • • , vn-1) is a word  of C if and 
only if the  corresponding polynomial  v( x ) = vo -I- vlx -{- • • • + v,~_lx "-1 
is a mult iple  of g(x )  ; i.e., v (x )  = g(x),~,(x) where ~ (x )  is a polynomial  
of degree k - 1 or less over  GF(q) .  T he  code C is cyclic; i.e., if v '  = 
(v~, vl, . . - ,  v~-l) is a word  of C, then  so is v ' ( i )  = (vi ,  v~+l, . . - ,  
v,,_~,:vo;v~:, . . . ,  v~_~). T he  generator  polynomial  g(x )  is of degree r 



SYNCHRONIZABLE ERROR-CORRECTING CODES 619 

and is a divisor  of x ~ - 1; i.e., we can find a po lynomia l  h (x)  over  GF(q)  
such t h a t  g ( x ) h ( x )  = x ~ - 1. 

T h e  B C H  code C is said to be  p r imi t ive  if u = 1, i.e., a is a pr imi t ive  
e lement  of GF(q m) and n = qm _ 1. 

I I I .  THE E N C O D I N G  P R O C E D U R E  FOR A CLASS OF SYNCt tRONIZABLE 
CODES 

Let C be the BCII code described in Section II, where d = 2t ~ I, so 
that C is t-error-correcting. Let ~ be a root of x ~ - i = 0 but not 
a root of g(x). Thus ~ is a root of h(x). Let f(x) be the minimum func- 
tion of/3, i.e., f(x) is the smallest-degree monic polynomial over GF(q) 
which has ~ for a root. The degree of f(x) will not exceed m, and will 
be ml where ml is a divisor of m. In this case ~ will belong to a subfield 
of order qml of the field GF(qm). The polynomial f(x) will be a divisor of 
h(x). Let nl be the order of/~, i.e., nl is the smallest positive (nonzero) 
integer such that ~i = i. Then nl is a divisor of n. 

Let C* be the subcode of C generated by g(x)f(x) ; i.e., the polynomial 

corresponding to a word of C* is divisible by g(x)f(x). Then C* is an 
(n, k*) code where k* = n -- r - ml. Any word v p -- (Vo, vl, .. • , v,,_1) 

of C* satisfies 

v ' [H ' , / /1 '1  = 0, 

where  H is the  par i ty -check  ma t r ix  of C, and  

H1 = [1, ~, ~2, . . .  i ~ - 1 ] .  

As before, H1 m a y  be regarded as ei ther  a row vec tor  over  GF(q m) or 
an m X n ma t r ix  over  GF(q) .  

Le t  c '  = (co, cl ,  - . .  , c~-1) be  a fixed nonnul l  word  of C, which does 
not  belong to  the  subcode C*. Le t  t~ = h -t- t~ < n~ ( the  order of ¢~). 
I t  is our  object ive  to cons t ruc t  a code which can correct  a shift  of 
order  up  to h to the  left  or a shift  of order up  to t~ to the  right.  Since 
t, > 0, the  requ i rement  t, < n~ implies n~ > 1. T h u s  ~ ¢ 1. Corresponding 
to v '  and  c', we now take  a u g m e n t e d  words  

v ~ '  = ( v ~ _ , ~ ,  V n - - , ~ + ~ ,  " ' "  , V~_~ i VO,  V ~ ,  " ' "  , V~_~ i VO,  V l ,  " ' "  , V,~--~), 

c~' = (c~_,~ .  Cn--,~+~ , " ' "  , C~-~ ~ CO, C~ , " ' "  , C~_~ i CO, C~ , " ' "  , C ~ _ ~ ) .  

T h u s  we buffer  v '  b y  cyclically adding t~ symbols  to the  left  and  t~ 
symbols  to  the  r ight  of v ' .  A similar  procedure  is adop ted  for  buffering 
c' .  We  now consider a new code C~ whose words are v~' -t- c, ' .  T h e  words 
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of C~ are in (1, 1) correspondence with the words of C*. Hence the num- 
ber of message sequences is the same as for C*, viz., qk*. When we want 
t o  send a message corresponding to the word v' of C* we shall actually 
transmit v, I W ca'. The length of the new code is n, = n -}- tr -+- tl, 
and the number of information places is k~ = k* -- n - r -- ml.  Hence 
the redundancy is r~ = r -}- t, -}- m~, where t, = tr ~ t~ is the sum of 
the orders of the maxiraum shifts to the right and left which are to be 
corrected. 

IV. THE DECODING PROCEDURE 

Suppose va I -~ ta I is transmitted, and the additive-error vector is 

l 

e~ = ( fn-- tr ,  " " ,  f , , - 1 ,  i eo, O ,  " " ,  e n - l ,  i f o ,  f l ,  " " ,  f~,-1). 

Thus the received vector will be 
,' ! ! ! 

ya = v ~  -}-ca -}- e~, 

if there is no shift error. If  there is a shift of L places to the left, L _-< tl, 
then L of the initial symbols of ya' will go over to the previous word, and 
the received word will contain in the end L symbols from the beginning 
of the succeeding word. Similarly if there is a shift of R places to the 
right, R -<_ t,, then R of the end symbols of y~' will be shifted to the 
subsequent word, and in the beginning of the received word we will have 
R symbols from the end of the previous word. The decoding proceeds 
step b y  step as follows: 

S t e p  I .  We form the truncated received word y'  by dropping the 
first tr and the last t~ symbols of the received word y~'. The truncated 
received word is of length n. Note that  the symbols dropped are just 
those which in an extreme case under the permissible synchronization 
errors could have come from a previous or a subsequent word. We now 
consider three cases separately. 

Case (i). If there are no synchronization errors the truncated 
received word will be 

I 
y = (vo ,  v l ,  . . . .  , v~,-1) -}- ( c o ,  c l ,  " " ,  c,,-1) + (eo ,  O ,  " " ,  e,,-1) 

_~ v t _}- c I ~ e I. 

Case (ii). If there is a left shift of L < t~ places, then the truncated 
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received word will be 
p 

y = (VL,VL+I, " ' ' ,Vn-- I ,V0,  " ' ' ,VL--1) 

+ (CL, eL-l,  " • , C~_1, co, Cl, • • • , CL-I) 

+ ( e L ,  eL+l ,  . . .  , e~_~, :fo, A ,  " ' "  , A - l )  
? 

= v ' ( L )  -t- c ' ( L )  ~- eL.  

where we use the  no ta t ion  v ' ( i )  to denote  (v~ ,  v~_l ,  . • • , v,~_~, Vo, v l ,  

• " " , V / - - 1 ) .  

Case (iii).  Similarly, if there  is a r ight shift of R < tr places, 
then  the  t runca ted  received word will be 

! 

y -= (v,~_~, " ' , v , ~ _ l , v o , v l ,  " ' ' , V ~ - - R - - 1 )  

+ (c~_,,  . . ' ,  c~-1, Co, cl, - " ,  c~-R-~) 

+ (A-R,  " " ,  A-~,  e0, e~, . . . ,  e ~ - , - 1 )  

= v ' (n  -- R)  + ¢'(n -- R)  + e : _ ~ .  

S t e p  I I .  We form the addit ive-error  syndrome y H .  N ore tha t  f rom 
• ! l l . 

the  cyehc na ture  of B C H  codes, v ,  v (L) or v (n - R) m cases ( i) ,  
( i i) ,  and (iii),  respectively,  will belong to the code C. Similarly c', c ' (L) ,  
or c ' (n  -- R) will belong to the  C. Hence  

y ' H '  ' ' = e H ,  in case (ii) ,  

y ' H '  ' ' = e L H ,  in ease (ii),  

y '  H '  = ' ' e~_RH, in ease (iii). 

B y  assumption,  the number  of addit ive errors is less than  or equal  to 
! 

t, so t ha t  wt(e~') _-< t. Consequent ly  wt(e ' ) ,  w t ( e L ' )  or wt(e~_R) will be 
less t han  or equal  to t. T h e n  as for B C H  codes there  will be a ( 1, 1) corre- 
spondence between the  error vec tor  and the  syndrome.  Hence the error  
vec tor  can be de termined  by  using any  error-correct ion procedure for 
t-error correct ing B C H  codes. 

S t e p  I I I .  The  received t runca ted  word y '  is now corrected for addi- 
p ! 

give errors by  subt rac t ing  the de termined error  vec tor  e', eL,  or e~_R. 
We thus  obta in  

z '  = v '  -l- c' in case ( i) ,  

z' = v ' ( L )  -1- c ' ( L )  in case (ii) ,  

z' = v ' ( n  --  R)  -}- c ' (n  -- R)  in ease (iii).  
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! ! 
Step I V .  We now form the shift-error syndrome z H1.  Since f rom 

our method  of formation,  the subeode C* is also a cyclic code, v ' ( L )  
and v ' ( n  - R )  belong to C* in eases (ii) and (iii), respectively. 

Hence we obtain 

Z'Hl '  

z~H1 ' 

z 'HI '  

= c 'HI '  in case (i) ,  

= c ' ( L ) H 1  r in case (ii), 

= c ' ( n  - R ) H I '  in ease (iii). 

Since the order of ~ is n l ,  a divisor of n, we have $~1 = 1, ¢~ = 1. 
Also 1, ~, f ,  . . .  , ~n1--1 are all different. N o w  

c 'HI '  = co -}- c1~3 -}- c2¢ 2 + " '"  + Cn--lt~ n-1 = ~', say, 

where ~- is a known element of GF(qm),  since c '  and ~3 are known.  Again,  

c ' ( L ) H I '  = eL --}- CL+l~ -{- cL+2f + . . -  -}- CL--I~ ~-1 /~--L~_ = t3~,--L~_, 

• " e ° n - 1  c ' ( n  -- R ) H 1  r cn-R + Cn--R+I~ "~ Cn--R-I-2~ 2 -t-- " "t- n--R--1P = ~R~. 

Step V. Divide the shift-error syndrome by  the  known element ~', 
nl--L {~R obtaining 1, B , in cases (i) ,  (ii), and (iii), respectively. N o w  

1 < L < ti ,  1 < R < tr, and by  supposit ion t~ = tr -t- h < n~. Hence 
nl - L > 6 .  Thus  if the answer in step V is 1, we conclude tha t  there 
is no shift error. I f  the  answer in step V is ¢~ where u > t~ we conclude 
tha t  a left shift of order L = nl - u has occurred. Again, if 1 < u < t~, 
we conclude tha t  a r ight  shift of order R = u has occurred. 

We can now correct z p by  applying the reverse shift, and obtain  v '  + c'.  
Finally,  by  subtrac t ing c '  we obtain  v ,  the word of C* which corresponds 
to the message sent. 

I t  should be remembered  t h a t  in applying this procedure,  synchroniza-  
t ion errors can be corrected at the word following tha t  where informat ion 
symbols  have been lost or gained, and no t  in the damaged  word itself. 

V. EXAMPLE 

A P P L I C A T I O N  OF T H E  T E C H N I Q U E  TO A B C H  B I N A R Y  C O D E  OF L E N G T H  

n = 15 

To i l lustrate the  new synchronizat ion technique,  we shall consider the  
B C H  code of length n = 2 ~ - 1 = 24 - 1 = 15 which originally was 
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T A B L E  1 

NONZERO E L E M E N T S  OF G F ( 2 ~ ) ,  E X P R E S S E D  AS P O W E R S  OF TI-IE I~OOT 
a = (0, 1, 0, 0) O~ ~g~MINIMUM FUNCTmN gi(x) = X 4 -}- X ~- F' 

~0 = 1 = ( 1 , 0 , 0 , 0 )  
a = x = (0, 1 , 0 , 0 )  
a~ = x ~ = (0, 0, 1, 0) 
~a = x 3 = ( 0 , 0 , 0 , 1 )  
oe ~ = 1 - k x  = (1, 1 , 0 , 0 )  
a s = x + x 2 = (0, 1 , 1 , 0 )  
~6  = x 2 -+-  x a = ( 0 , 0 ,  1,  1) 

a 7 = 1 + x  + x  a = (1, 1 , 0 , 1 )  
a s = 1 q- x ~ = ( 1 , 0 , 1 , 0 )  
~9 = x + x a = (0 ,  1 , 0 , 1 )  

a 1° = 1 + x + x  ~ = ( 1 , 1 , 1 , 0 )  
~I1 = x + x  2 +  x a = ( 0 , 1 , 1 , 1 )  

~1~ = l - + - x - k x  2 - k x  a = ( 1 , 1 , 1 , 1 )  

a la = 1 + x  2 q - x  ~ = ( 1 , 0 , 1 , 1 )  
al~ = 1 q - x  3 = ( 1 , 0 , 0 , 1 )  

The polynomial  expression for each power of a is ob ta ined  by  using the  
re la t ion  a = x, x 4 = x + 1. 

p r e s e n t e d  b y  B o s e  a n d  R a y - C h a u d h u r i  ( 1 9 6 0 a ) .  O v e r  t h e  coef f i c ien t  

f ie ld  G F ( 2 )  w e  h a v e  t h e  f a c t o r i z a t i o n  

x 15 - 1 = g l ( x ) g a ( x ) g s ( x ) g T ( x ) ( x  + 1) 

= (x 4 + x + 1 ) ( .  4 + x  ~ + x 2 + z + t ) ( z  2 + x +  1) 

• ( x  4 + x 3 ~- 1 ) ( x  + 1) ,  

w h e r e  g~(x)  d e n o t e s  t h e  m i n i m u m  f u n c t i o n  of a ~. W e  c h o o s e  

g ( x )  = g l ( x ) g a ( x )  

= (x ~ + z + l ) @  4 + x  3 + z  2 + x + 1 )  

--  1 ~ - x  4 + x  6 - b x  7 + x  s 

f o r  t h e  g e n e r a t o r  p o l y n o m i a l  of  t h e  c o d e  C. T h e  code  C is a n  ( n ,  k)  = 

( 15, 7)  code .  T h e  G a l o i s  f ie ld G F (  24) is b a s e d  o n  t h e  p r i m i t i v e  p o l y n o m i a l  

g~(x )  --  x 4 + x + 1. Al l  t h e  n o n z e r o  e l e m e n t s  of  G F ( 2  ~) c a n  t h u s  b e  

w r i t t e n  as  p o w e r s  of  t h e  r o o t  a = (0 ,  1, 0, 0 )  of g ~ ( x ) ,  a n d  t h e y  a r e  

s h o w n  in  T a b l e  1~ T h e  ze ro  e l e m e n t  is,  of cou r se ,  (0 ,  0, 0, 0 ) .  T h e  r o o t s  
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of the  primit ive polynomial  gl(X) are 

2 4 8 
O~, Or ,  ~ ,  Or ,  

and the  roots  of g~(x) are 

3 6 12 24 9 

Thus,  

2 3 4 6 8 9 12 

are all the  roots  of g(x) ,  and the code is (t = 2)-addit ive-error-correct-  
ing, since the  first 2t = 2 .2  = 4 successive powers of a are roots  of g(x). 
To use the  new synchronizat ion technique,  we mus t  choose/3 = d ~ 1 
such t h a t  fl is not  a root  of g(x). Equivalent ly ,  we mus t  choose for f ( x )  
a m in imum funct ion g~(x) ~ x - 1 such t h a t  g~(x) is no t  a factor  of 
g(x). N o w  the  factors  of x 15 - 1 other  t han  (x - 1)g(x)  are gs(x) 
and gT(x). The fac tor  gs(x) has roots a 5 and a 1°, and the  factor  gT(x) 
has roots  a 7, a 14, a 13, and a 11. Thus  we can choose either j = 5 or j = 7, 
corresponding to f (x)  = gs(x) or gT(x). Let  us suppose fur ther  t h a t  we 
wish to  correct  a single left-shift or r ight-shift  error, so t h a t  tl = tr = 1, 
and therefore ts = 2. The  final requirement  on j is t h a t  ts < nl where nl is 
the  order of d .  Now bo th  gs(x) and gT(x) satisfy 2 = ts < n l ,  since the  
order  of a 5 is 3 and the  order of a 7 is 15. Thus  gs(x) and gT(x) 
are bo th  acceptable choices for f (x) .  However ,  in order  to  add as little 
r edundancy  as possible for synchronizat ion purposes, we choose for 
f (x )  the  acceptable polynomial  of least degree satisfying ts < n l .  Hence  
we take  f (x)  = gs(x.). Thus  the  subcode C* has the  generator  poly-  
nomial  

g*(x) = g(x)gs(x) 

= (1 + x  4 ~- x 6 ~ - x  7 + x  s)(1 ~ - x  ~ - x  2) 

= 1 - t - x  + x  2 ~ - x  4 + x  5 - ~ x  s W x  1° 

and C* is thus  an (n, k*) = (15, 5) code. The  subcode C* has the roots 

2 3 4 5 6 8 10 12 
~ ,  O ~ , O t ,  OL, O~, OL, OL, Ot ,OL . 

Such a code, if used solely for addit ive-error  correction, would be a 
3-addit ive-error correcting B C H  code, since the  first six successive powers 
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of a are roots of C*. The generator matr ix  of C* is given by  

-1 1 1 0 1 1 0 0 1 0 1 0 0 0 0- 

0 I 1 1 0 1 1 0 0 1 0 1 0 0 0 

G * =  0 0 1 1 1 0 1 1 0 0 1 0 1 0 0 

0 0 0 1 1 1 0 1 1 0 0 1 0 1 0 

0 0 0 0 1 1 1 0 1 1 0 0 1 0 1 

The code C is the null space of the matr ix  Ho given by  

E: . . . . . .  

Ho = £ (d)~ (d)~ (d)14j 

I-1 0 0 0 1 0 0 1 1 0 1 0 1 1 1- 

0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 
! 

I0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 

O 0 0  t 0 0 1 1 0 1 0 1 1  1 1  
= i  

1 0 0  0 1 1 0 0 0 1 1 0 0 0  1 

0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 

0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 

0 1 1 1 1 0 1 1 1 1 0 1 1 1 1_ 

We note tha t  Ho has r = n -- k = deg [g(x)] = 8 rows, so tha t  the 
par i ty  check matrix of C is equal to Ho. The matrix H1 is given by 

= [], 5 ,  (£)2,  . . . ,  (5)1~, ( ~)~41 i:o o11OllOllOil 
1 1 0 1 1 0 1 1 0 1 1 0 1 

L: 1o, o1,o1,o  
0 0 0 0 0 0 0 0 0 0 0 0 0  
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We can see from this mat r ix  that ,  as noted earlier, the order of fl.is 3, 
i.e., B~ = ( 1, 0, 0, 0). Note  tha t  the last row of H1 is null, and the second 
and third rows are identical so tha t  H1 is not of full rank. The rank of H1 
is in fact, equal to deg [gs(x)] = 2. To encode a k*-eoordinate informa- 
tion vector s '  = (So, sl ,  • • • , sk*-l) into a codeword of C*, we make the 
vector s '  correspond to the codeword v '  P * = s G . [Equivalently, we make 
the information polynomial 

s(  x ) = So + s~x + s~x ~ + . . .  + sk ,_ l z  k*-~ 

correspond to the code polynomial s(x)g*(x).] For  example, the vector  
(10110) is encoded into (10110)G* = (110010100001110). Table 2 
contains a list of the 32 possible information vectors, s p, and the corre- 
sponding codewords of C*. 

Since t~ = 1 and tr = 1, the words of the augmented subcode Ca 
are obtained by  adjoining the initial symbol  of each word of C* to the 
end of the word, and adjoining the final symbol to the beginning. 

We now must  determine a choice for the translation vector c ~. Suppose 
tha t  we choose c ~ = g', where gP = (100010111000000) is the coefficient 
vector  of g(x), considered as a polynomial of degree 14. Then we have 

! 
Ca = ( 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 1 ) ,  

and we m a y  formally write 

C~ = Ca + ca p, 

since each word of Ct corresponds to the sum of ¢r  and a word of Ca. 
The words of the code C~ are shown in Table 2. The code C~ is an (n t ,  
kt) = ( 17, 5) code. I t  is the words of C~ tha t  are sent over the channel. 

The code Ct can correct t = 2 additive errors (since C is a 2-additive- 
error-correcting B C H  code) and t~ = 2 synchronization errors, and may  
be called a (t, t~) = (2, 2)-error-correcting code. 

The error-correction procedure is illustrated below. 
Suppose tha t  the source has generated the information vector 

s '  = (10110). The word in C* corresponding to s '  = (10110) is 
! ! 

v = (110010100001110), and the corresponding word in C~ is vt = 
(00100000110011100). Thus the word v (  = (00100000110011100) is 
sent over the channel. Supopse tha t  a left-shift error of order 1 has oc- 
curred, so tha t  if no additive errors occurred, the sequence 
(01000001100111001) would be received, where we have assumed for 
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TABLE 2 

CODEWORDS OF THE SUBCODE C* AND THE TRANSLATED AUGMENTED 

SUBCODE C t  
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Information vector Corresponding codeword of O* Corresponding codeword of Ct 
S I V t = StG * Vt t = V~ p --~ C~ / 

1 0 0 0 0  1 1 1 0 1 1 0 0 1 0 1 0 0 0 0  00110011100100000 
0 1 0 0 0  0 1 1 1 0 1 1 0 0 1 0 1 0 0 0  01111110111010001 
0 0 1 0 0  0 0 1 1 1 0 1 1 0 0 1 0 1 0 0  01011000010101001 
0 0 0 1 0  0 0 0 1 1 1 0 1 1 0 0 1 0 1 0  01001011000010101 
0 0 0 0 1  0 0 0 0 1 1 1 0 1 1 0 0 1 0 1  11000010101001011 
1 1 0 0 0  1 0 0 1 1 0 1 0 1 1 1 1 0 0 0  00001000101110000 
1 0 1 0 0  1 1 0 1 0 1 1 1 1 0 0 0 1 0 0  00101110000001000 
1 0 0 1 0  1 1 1 1 0 0 0 1 0 0 1 1 0 1 0  00111101010110100 
1 0 0 0 1  1 1 1 0 0 0 1 0 0 1 1 0 1 0 1  10110100111101010 
0 1 1 0 0  0 1 0 0 1 1 0 1 0 1 1 1 1 0 0  01100011011111001 
0 1 0 1 0  0 1 1 0 1 0 1 1 1 1 0 0 1 1 0  01110000001001101 
0 1 0 0 1  011110001001101 11111001100011011 
0 0 1 1 0  0 0 1 0 0 1 1 0 1 0 1 1 1 1 0  01010110100111101 
0 0 1 0 1  0 0 1 1 0 1 0 1 1 1 1 0 0 0 1  11011111001100011 
0 0 0 1 1  0 0 0 1 0 0 1 1 0 1 0 1 1 1 1  11001100011011111 
1 1 1 0 0  1 0 1 0 0 0 0 1 1 1 0 1 1 0 0  00010101001011000 
1 1 0 1 0  1 0 0 0 0 1 1 1 0 1 1 0 0 1 0  00000110011100100 
1 1 0 0 1  1 0 0 1 0 1 0 0 0 0 1 1 1 0 1  10001111110111010 
1 0 1 1 0  1 1 0 0 1 0 1 0 0 0 0 1 1 1 0  00100000110011100 
1 0 1 0 1  1 1 0 1 1 0 0 1 0 1 0 0 0 0 1  10101001011000010 
1 0 0 1 1  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  10111010001111110 
0 1 1 1 0  0 1 0 1 0 0 0 0 1 1 1 0 1 1 0  01101101101101101 
0 1 1 0 1  0 1 0 0 0 0 1 1 1 0 1 1 0 0 1  11100100000110011 
0 1 0 1 1  0 1 1 0 0 1 0 1 0 0 0 0 1 1 1  11111111010001111 
0 0 1 1 1  0 0 1 0 1 0 0 0 0 1 1 1 0 0 1  11010001111110011 
1 1 1 1 0  1 0 1 1 1 1 0 0 0 1 0 0 1 1 0  00011011111001100 
1 1 1 0 1  1 0 1 0 1 1 1 1 0 0 0 1 0 0 1  10010010010010010 
1 1 0 1 1  1 0 0 0 1 0 0 1 1 0 1 0 1 1 1  10000001000101110 
1 0 1 1 1  1 1 0 0 0 1 0 0 1 1 0 1 0 1 1  10100111101010110 
0 1 1 1 1  0 1 0 1 1 1 1 0 0 0 1 0 0 1 1  11101010110100111 
1 1 1 1 1  1 0 1 1 0 0 1 0 1 0 0 0 0 1 1  10011100100000110 
00000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  01000101110000001 

definiteness t ha t  the  first symbol  in the word following v (  was 1. I n  

addi t ion  to the synchroniza t ion  error, however,  let us suppose t ha t  two 
addi t ive  errors occurred, so t ha t  the th i rd  and  twelf th symbols  of 

(00100000110011100), or the second and  e leventh  symbols  of 
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( 01000001100111001 ), were complemented. Thus 
! 

Ya = (01000001100111001) ~ (01000000001000000) 

= ( 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 1  ) 

is the received word. The receiver drops the first and last symbols of 
! 

y~ (i.e., the first 4 and last h symbols, with tr = tl -- 1), to obt'ain 
! 

y = (000000110111100). 

The receiver then calculates the additive-error syndrome 

y ' H  p = (11010111). 

Since the additive-error syndrome is nonzero, the receiver interprets tha t  
an additive error has occurred, and proceeds to correct it. To do this, the 
receiver would employ one of the known procedures for correcting ad- 
ditive errors for the B CH code C, using the syndrome (11010111). 

Since we have 

(100000000100000)H' = (11010111), 

the receiver would reach the conclusion that  the additive-error pat tern 
in y'  is 

! 
e = (100000000100000). 

The receiver then calculates the corrected vector 
! ! ! 

Z =y - - e  

= (000000110111100) -- (100000000100000) 

= ( 1 0 0 0 0 0 1 1 0 0 1 1 1 0 0 ) .  

Next  it calculates the synchronization-error syndrome 

z 'Hl '  = (0110) = a ~. 

The receiver must  now use this synchronization-error syndrome to deter- 
mine which synchronization error, if any, has occurred. 

To do this it calculates 

c 1 = (1110) = a 1°. 

Now 
z'  H l '  /~  = as ia  z° = ~32; 
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thus 

f~=¢~2 or u =  2 > i = t r .  

Hence the receiver interprets tha t  a left-shift error of order 
L = nl -- u = 3 - 2 = 1 has occurred, and moves the word marks one 
place to the left. 

Hence the truncated received word, corrected for additive and syn- 
chronization errors, is 

! 
zo --- ( 0 1 0 0 0 0 0 1 1 0 0 1 1 1 0 ) .  

Subtracting c', the receiver correctly interprets that  

! e ! ~ v' = z¢ -- (010000011001110) (100010111000000) 

= (110010100001110) 

is the word of C* corresponding to the transmitted word. Hence the in- 
s p formation symbols are correctly interpreted as = (10110). 

Because of the seriousness of synchronization errors, the receiver 
should not take corrective action upon observing the first indication 
(from the synchronization-error syndrome) that  a synchronization error 
has occurred. For  proper use of the technique, the truncated received 
word must not itself contain the synchronization error. Thus the first 
word after the word containing the synchronization error gives the first 
reliable indication of the occurrence of the synchronization error. Words 
actually containing symbol gains or losses are severely altered and may 
result in nonzero, but  false, synchronization error syndromes. Also, if 
more than t additive errors occur, a nonzero synchronization-error syn- 
drome may result even though there has been no synchronization error. 
The importance of making correct decisions regarding synchronization 
errors warrants the observation by the receiver of the s a m e  synchroniza- 
tion-error syndrome for several successive words before correcting the 
apparent synchronization error. Of course, if the receiver destroys syn- 
chronization by taking corrective action corresponding to a spurious non- 
zero synchronization-error syndrome resulting from the occurrence of 
more than t additive errors, then this mistake will be rectified with the 
next received word containing not more than t additive errors. 

RECEIVED: January  6, 1967; revised April 21, 1967 
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